

Problem 1. Identical interest games and potential games

Consider an N -player game, in which each player P_i has a set Γ_i of pure strategies. Let $\Gamma = \Gamma_1 \times \cdots \times \Gamma_N$. A game is said to be of *identical interests* if all players have the same cost function, that is

$$J_i(\gamma) = \phi(\gamma) \quad \forall i = 1, \dots, N, \forall \gamma \in \Gamma.$$

- Show that an identical interest game has a pure strategy Nash equilibrium. Furthermore, this Nash equilibrium is admissible.
- Consider the identical interest game below. Show that it has two admissible Nash equilibria, but these equilibria are not interchangeable: $A = B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- Suppose γ is a Nash equilibrium for the game. Is it a minimizer of ϕ ? Justify your answer.

Problem 2.

Provide two approaches for verifying whether the prisoner's dilemma game discussed in Lecture 01 is a potential game. Show your work for both approaches.

$$\begin{array}{cc}
 & \text{Confess} \quad \text{Stay silent} \\
 \text{Confess} & \begin{bmatrix} (5, 5) & (0, 10) \\ (10, 0) & (1, 1) \end{bmatrix} \\
 \text{Stay silent} &
 \end{array}$$